On the Epipolar Geometry with two Coincident Projection Planes and two Coincident Epipoles at Infinity

Georgiev, Georgi Hristov; Radulov, Vencislav Dakov
November 2014
AIP Conference Proceedings;2014, Vol. 1631, p383
Conference Proceeding
The epipolar geometry describes relationships between two 2D images of 3D objects. This branch of real projective geometry has many applications in Photogrammetry and Computer Vision. The paper presents a special epipolar geometry whose baseline is parallel to the common image plane. The properties of the fundamental matrix are obtained in the considered case. Several possible applications for building facade reconstructions are discussed.


Related Articles

  • Arnold's Projective Plane and r-Matrices. Uchino, K. // Advances in Mathematical Physics;2010, p1 

    We will explain Arnold's 2-dimensional (shortly, 2D) projective geometry (Arnold, 2005) by means of lattice theory. It will be shown that the projection of the set of nontrivial triangular r-matrices is the pencil of tangent lines of a quadratic curve on Arnold's projective plane.

  • Semifield planes of order p 4 and kernel GF( p 2). Cordero, Minerva // Journal of Geometry;2005, Vol. 83 Issue 1/2, p5 

    In this article we determine the number of non-isomorphic semifield planes of order p 4 and kernel GF( p 2) for p prime, 3 ≤ p ≤ 11. We show that for each of these values of p, the plane is either desarguesian, p-primitive, or a generalized twisted field plane. We also show that the...

  • Small semiovals in PG(2, q). Kiss, György // Journal of Geometry;2008, Vol. 88 Issue 1/2, p110 

    A semioval in a projective plane $$\prod$$ is a nonempty subset S of points with the property that for every point P ∈ S there exists a unique line ℓ such that $$S \cap \le = \{P\}$$ . It is known that $$q +1 \leq \|S\| \leq q\sqrt{q} + 1$$ and both bounds are sharp. We say that S is...

  • REFURBISH O R REPLACE? GOLDA, ROBERT // FORM: Pioneering Design;May/Jun2014, preceding p27 

    The article focuses on the renovation and expansion of the Jacob K. Javits Convention Center in New York City, particularly its facade and skylight systems.

  • Residential Specialty.  // Qualified Remodeler;Oct2011, Vol. 37 Issue 10, p36 

    The article focuses on renovation of a residential facade located in Nashville, Tennessee by Huseby Homes LLC.

  • Finite Bolyai-Lobachevskii planes. Korchmáros, Gábor; Sonnino, Angelo // Acta Mathematica Hungarica;Mar2012, Vol. 134 Issue 4, p405 

    Finite analogs of the classical Beltrami-Klein model of the Bolyai-Lobachevskii plane arising from ovals, unitals and maximal ( k, n)-arcs are of interest in finite geometry. Three new results are obtained which give characterizations of such models equipped with many symmetries.

  • Entirely circular quartics in the pseudo-Euclidean plane. Jurkin, E.; Kovačević, N. // Acta Mathematica Hungarica;Mar2012, Vol. 134 Issue 4, p571 

    A curve in the pseudo-Euclidean plane is circular if it passes through at least one of the absolute points. If it does not share any point with the absolute line except the absolute points, it is said to be entirely circular. In this paper we construct all types of entirely circular quartics by...

  • On Cross-Ratio in some Moufang-Klingenberg Planes. Akpinar, Atilla; Celik, Basri // World Academy of Science, Engineering & Technology;Aug2010, Issue 44, p10 

    No abstract available.

  • Tensor of nonabsolute displacements on Grassman-like manifold of centered planes. Belova, O. // Journal of Mathematical Sciences;Sep2011, Vol. 177 Issue 5, p647 

    For the Grassman-like manifold of centered planes in a projective space, we construct an object, which is the tensor of nonabsolute displacements. If this tensor vanishes, then parallel displacements of clothing planes are absolute.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics