TITLE

Rainfall anomaly prediction using statistical downscaling in a multimodel superensemble over tropical South America

AUTHOR(S)
Johnson, Bradford; Kumar, Vinay; Krishnamurti, T.
PUB. DATE
October 2014
SOURCE
Climate Dynamics;Oct2014, Vol. 43 Issue 7/8, p1731
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
This study addresses the predictability of rainfall variations over South America and the Amazon basin. A primary factor leading to model inaccuracy in precipitation forecasts is the coarse resolution data utilized by coupled models during the training phase. By using MERRA reanalysis and statistical downscaling along with the superensemble methodology, it is possible to obtain more precise forecast of rainfall anomalies over tropical South America during austral fall. Selective inclusion (and exclusion) of member models also allows for increased accuracy of superensemble forecasts. The use of coupled atmospheric-ocean numerical models to predict the rainfall anomalies has had mixed results. Improvement in individual member models is also possible on smaller spatial scales and in regions where substantial topographical changes were not handled well under original model initial conditions. The combination of downscaling and superensemble methodologies with other research methods presents the potential opportunity for increased accuracy not only in seasonal forecasts but on shorter temporal scales as well.
ACCESSION #
98581918

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics