TITLE

Self-Destruct Genetic Switch to Safeguard iPS Cells

AUTHOR(S)
Ivics, Zoltán
PUB. DATE
September 2015
SOURCE
Molecular Therapy;Sep2015, Vol. 23 Issue 9, p1417
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The author comments on a study that make use of the self-destructing genetic switch in safeguarding the induced pluripotent stem (iPS) cells. The topics discussed include the effectiveness of differentiated somatic cell direct reprogramming in producing similar embryonic stem (ES) cells, the enginerring of the human iPS cells in expressing inducible caspase-9, and the possible application of transplantation and cellular replacement therapies.
ACCESSION #
109166152

 

Related Articles

  • An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. Menon, Siddharth; Shailendra, Siny; Renda, Andrea; Longaker, Michael; Quarto, Natalina // International Journal of Molecular Sciences;2016, Vol. 17 Issue 1, p141 

    Stem cells are classified into embryonic stem cells and adult stem cells. An evolving alternative to conventional stem cell therapies is induced pluripotent stem cells (iPSCs), which have a multi-lineage potential comparable to conventionally acquired embryonic stem cells with the additional...

  • Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Tanay, Amos; Chomsky, Elad; Zeliger, Shlomit Reich; Friedman, Nir; Fried, Yael Chagit; Ainbinder, Elena // Nature;9/4/2014, Vol. 513 Issue 7516, p115 

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and...

  • n-Butylidenephthalide (BP) Maintains Stem Cell Pluripotency by Activating Jak2/Stat3 Pathway and Increases the Efficiency of iPS Cells Generation. Shih-Ping Liu; Horng-Jyh Harn; Ying-Jiun Chien; Cheng-Hsuan Chang; Chien-Yu Hsu; Ru-Huei Fu; Yu-Chuen Huang; Shih-Yin Chen; Woei-Cherng Shyu; Shinn-Zong Lin; Rameshwar, Pranela // PLoS ONE;Sep2012, Vol. 7 Issue 9, Special section p1 

    In 2006, induced pluripotent stem (iPS) cells were generated from somatic cells by introducing Oct4, Sox2, c-Myc and Klf4. The original process was inefficient; maintaining the pluripotency of embryonic stem (ES) and iPS cell cultures required an expensive reagent-leukemia induced factor (LIF)....

  • Inhibition of PTEN Tumor Suppressor Promotes the Generation of Induced Pluripotent Stem Cells. Liao, Jiyuan; Marumoto, Tomotoshi; Yamaguchi, Saori; Okano, Shinji; Takeda, Naoki; Sakamoto, Chika; Kawano, Hirotaka; Nii, Takenobu; Miyamato, Shohei; Nagai, Yoko; Okada, Michiyo; Inoue, Hiroyuki; Kawahara, Kohichi; Suzuki, Akira; Miura, Yoshie; Tani, Kenzaburo // Molecular Therapy;Jun2013, Vol. 21 Issue 6, p1242 

    Induced pluripotent stem cells (iPSCs) can be generated from patients with specific diseases by the transduction of reprogramming factors and can be useful as a cell source for cell transplantation therapy for various diseases with impaired organs. However, the low efficiency of iPSC derived...

  • Developmental neuroscience: Miniature human brains. Brüstle, Oliver // Nature;9/19/2013, Vol. 501 Issue 7467, p319 

    The article presents a research that examines the effect of induced pluripotent stem (iPS) cells that are generated through the reprogramming of differentiated cells, and embryonic stem (ES) cells as a tool for modelling neurodevelopmental disorders. It determines how iPS cells can help in...

  • Stem cells: A designer's guide to pluripotency. Wu, Jun; Belmonte, Juan Carlos Izpisua // Nature;12/11/2014, Vol. 516 Issue 7530, p172 

    A review of articles discussing the analysis of induced pluripotent stem cells (iPSCs), a new type of stem cells formed by reintroducing embryonic stem cells (ES cells) into mature cells by P.D. Tonge and colleagues and S.M Hussien and colleagues, published in the December 2014 issue, ie presented.

  • iPSCs in Drug Discovery. Peluso, Carolyn // Drug Discovery & Development;Jul/Aug2012, Vol. 15 Issue 7, p10 

    The article discusses the significant role played by induced pluripotent stem cells (iPSCs) derived from adult somatic cells in drug discovery.

  • Stem cells: Sweetening pluripotency. Donner, Amy // Nature Chemical Biology;Jul2012, Vol. 8 Issue 7, p602 

    The article offers information on the transformation of somatic cells into induced pluripotent stem cells by the combination of transcription factors which includes octamer binding transcription factor 4 (OCT-4) and SOX2.

  • Stem cells: Efficient reprogramming from a privileged cell state.  // Nature Methods;Apr2014, Vol. 11 Issue 4, p369 

    The article discusses a research conducted by S. Guo, related to the identification of mouse granulocyte-monocyte progenitors and embryonic fibroblasts for reprogramming of somatic cells to induced pluripotency, published in a 2014 issue of the periodical "Cell."

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics